Modeling Dynamic Rupture in a 3D Earthquake Fault Model
نویسنده
چکیده
We propose a fourth-order staggered-grid finite-difference method to study dynamic faulting in three dimensions. The method uses an implementation of the boundary conditions on the fault that allows the use of general friction models including slip weakening and rate dependence. Because the staggered-grid method defines stresses and particle velocities at different grid points, we preserve symmetry by implementing a two-grid-row "thick" fault zone. Slip is computed between points located at the borders of the fault zone, while the two components of shear traction on the fault are forced to be symmetric inside the fault zone. We study the properties of the numerical method comparing our simulations with well-known properties of seismic ruptures in 3D. Among the properties that are well modeled by our method are full elastic-wave interactions, frictional instability, rupture initiation from a finite initial patch, spontaneous rupture growth at subsonic and supersonic speeds, as well as healing by either stopping phases or rate-dependent friction. We use this method for simulating spontaneous rupture propagation along an arbitrarily loaded planar fault starting from a localized asperity on circular and rectangular faults. The shape of the rupture front is close to elliptical and is systematically elongated in the inplane direction of traction drop. This elongation is due to the presence of a strong shear stress peak that moves ahead of the rupture in the in-plane direction. At high initial stresses the rupture front becomes unstable and jumps to super-shear speeds in the direction of in-plane shear. Another interesting effect is the development of relatively narrow rupture fronts due to the presence of rate-weakening friction. The solutions for the "thick fault" boundary conditions scale with the slip-weakening distance (Do) and are stable and reproducible for Do greater than about 4 in terms of 2T,//.t × Ax. Finally, a comparison of scalar and vector boundary conditions for the friction shows that slip is dominant along the direction of the prestress, with the largest deviations in slip-rate direction occurring near the rupture front and the edges of the fault.
منابع مشابه
Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake
[1] We have developed a systematic nonlinear inversion method for estimating rupture propagation and the underlying dynamic parameters for large historical earthquakes. The rupture modeling is carried out using a three-dimensional finite-difference method, and the inversion is implemented by a neighbourhood algorithm, minimizing the misfit between computed and observed near-fault seismograms. W...
متن کاملSeismological asperities from the point of view of dynamic rupture modeling: the 2007 Mw6.6 Chuetsu-Oki, Japan, earthquake
We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities in...
متن کاملA 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics
[1] We introduce a novel scheme, DGCrack, to simulate dynamic rupture of earthquakes in three dimensions based on an hp-adaptive discontinuous Galerkin method. We solve the velocity-stress weak formulation of elastodynamic equations on an unstructured tetrahedral mesh with arbitrary mesh refinements (h-adaptivity) and local approximation orders (p-adaptivity). Our scheme considers second-order ...
متن کاملPetascale Research in Earthquake System Science on Blue Waters (PressOn)
Broader Impacts. The Southern California Earthquake Center (SCEC) conducts a broad program of earthquake system science that seeks to develop a predictive understanding of earthquake processes with a practical mission aimed at providing society with improved understanding of seismic hazards. In partnership with earthquake engineers, SCEC researchers are developing the ability to conduct end-to-...
متن کاملThe Generation of Earthquake PGA Using Stochastic Finite Fault Method in Alborz Region
Time-history analysis is defined as a kind of dynamic analysis increasingly used in design of structures and evaluation of existing ones. One of the important issues in the Time-history analysis is selecting earthquake records. In this case, seismic design provisions states that time histories shall have similar source mechanisms, geological and seismological features with region under study. A...
متن کاملShort slip duration in dynamic rupture in the presence of heterogeneous fault properties
Recent studies of strong motion data consistently show that the risetime (duration of slip at particular locations on the fault) is significantly shorter than the overall rupture duration. The physical explanation for this observation and its implications have become central issues in earthquake source studies. Two classes of mechanisms have been proposed to explain short risetimes. One explana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998